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lyzed. The electromagnetic fields in conductors are directly analyzed
by forming sufficiently small grids compared to the skin depth, and
accurate attenuation constants are obtained for the lossy structures.
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A Simple Formula for the Concentration of Charge
on a Three-Dimensional Corner of a Conductor

Yimin Zhang and A. H. Zemanian

Abstract—A major problem in the computation of capacitance coeffi-
cients for microwave transmission and VLSI interconnection systems is
caused by the singularities in the electric field at the corners and edges
of conductors. For edges, a solution is given by the Duncan correction,
which is based on a two-dimensional (2-D) polar expansion of the field.
No such exact expansion exists for corners. Recent research by Beagles
and Whiteman has yielded an asymptotic expansion for the electric field
in the vicinity of a rectangular three-dimensional conductive corner, and
this is used to derive a simple formula for the charge @ (in coulombs)
concentrated at any such corner. The formula is Q@ = 1.307 ed(V. — V,),
where ¢ is the dielectric permittivity (in farads per meter) of the medium
surrounding the conductive corner, d is the length (in meters) of one
side of a cubic region situated on the conductor adjacent to the corner,
V. is the electric potential (in volts) of the conductor, and V; is the
electric potential at a point in the medium displaced from the corner’s
apex along a line through the cube’s diagonal and at a distance equal
to that diagonal. @ is the charge on the cube’s three surfaces lying
along the conductor’s surfaces. Such a configuration is convenient for
a finite-difference computation of capacitance.

1. INTRODUCTION

This paper concerns the capacitance coefficients of three-
dimensional (3-D) conductors, a matter of importance to microwave
transmission networks, VLSI interconnects, power transmission
systems, electric equipment, and electrical insulation technology.
Much work has been done on the computation of capacitances for
two-dimensional (2-D) models of interconnection lines and other
conducting bodies, but much less has been accomplished for 3-D
models. Extended bibliographies are given in [6], [7]. A major
difficulty arises from the singularities in the electrical field at 3-D
corners of a conductor. There are also field singularities along the
edges of conductors, but their contributions to capacitances are
readily determined by Duncan’s correction [2], [S], which is based
upon an exact 2-D polar expansion of the field. Since no such
exact expansion exists in spherical coordinates, there is no exact
3-D analog of the Duncan correction. Instead, we have sought an
approximating asymptotic expansion for the electrical field near a
3-D reentrant corner. There is a literature on this subject; see for
an extended bibliography in [7]. Much of this work is of a very
general nature dealing with a variety of differential equations and
a variety of geometries. The paper of Beagles and Whiteman [1]
is the most pertinent one for our purposes. By using the results
of that work, we have derived a simple formula that takes into
account the concentration of charge at any 3-D rectangular corner.
This is most easily used in correcting the capacitances obtained from
finite-difference computations.
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sampling point (d, d, d)

Fig. 1. A 3-D rectangular corner on a conductor. The edges of the corner lie
along the negative z, y, z coordinates. The total charge given by (1) lies on
the surface consisting of the three squares of length d per side shown shaded.
The point in the medium at which electric potential is sampled is (d, d, d);
thus, it lies on a line passing through the diagonal of the cube formed by
the three squares and displaced from the apex O of the corner by the length
of the diagonal.

II. THE FORMULA

Our objective is to determine the total charge on an incremental
area adjacent to a 3-D rectangular corner of a perfect conductor. That
area consists of three squares of equal size abutting the apex of the
corner, as shown by the shaded areas in Fig. 1. Thus, those squares
form three sides of a cube with side length of d meters. We choose
rectangular coordinates (x, y, z) such that the edges of the corner lie
along the negative axes. Another cube of equal size abut the apex,
with the diagonals of both cubes forming a straight line. Thus, the
point (d, d, d) lies in the medium surrounding the conductor and at
the second cube’s corner furthest away from the apex O. Let V; be
the electric potential at the point (d, d, d) and let V. be the electric
potential of the conductor, both measured in volts of course. Thus, V,
samples the electric potential in the vicinity of the corner when the
conductor is held at the voltage V.. The total charge () in coulombs
on the three squares (shown shaded in Fig. 1) is given by

Q = 1.307=d(V. — V;) M

where ¢ is the dielectric permittivity of the medium in farad per meter.

This is a very simple formula to use in order to take into account the
electric field singularity when the capacitance of a conductor is being
determined through a finite-difference computation of the electric
potential. This is especially so when the increments in the x, y, and
z coordinates are all equal. Simply set d equal to that increment. If
those increments are not the same, then d might be set equal to the
smallest of them, and additional rectangular incremental areas may be
appended to the squares to conform with the rectangular incremental
areas of the finite-difference computation. Those additional areas abut
edges of the conductor, and the charges on them can be obtained from
Duncan’s correction. In short, the procedure to use when making a
finite-difference computation of capacitance is to discard the charge
on the three squares as determined by that computation and to
substitute in its place the charge as given by (1). (This is what one
does when using the Duncan correction.)

III. DERIVATION OF THE FORMULA

The derivation is rather complicated. Space limitations prevent us
from explicating all its details. Those can be found in the thesis [7].
However we can explain how (1) is derived.

G=144.74°

Fig. 2. A 3-D rectangular corner whose apex is at the center of a sphere. [’
is the curve of intersection between the corner and the sphere.

We work in spherical coordinates (7, 8, ¢) with axis along the
diagonal line through (d, d, d) and O in Fig. 1. This is shown in
Fig. 2 with the corner rotated to make that axis vertical. Also shown
is a sphere centered at the corner’s apex. The sphere will intersect the
corner’s plane surfaces along a curve I'. We choose ¢ to equal 0°,
120°, and 240° at the three points where the edges meet the sphere.
On I, the minimum value of # is 125.26° and occurs at those three
edge points. Also, on I'. the maximum value of ¢ is 144.74° and
occurs where ¢ equals 60°, 180°, and 300°.

We wish to compute the surface charge density when the conductor
is held at V. while all other conductors—and infinity as well—are
held at the voltage 0 volt.

We start with an asymptotic expansion of the electrical potential
V(r, 8, ¢) in the vicinity of the corner as given in [2] and {3]

N-1
Vir, 0, ¢) Vo1 Yy
n=0

- ap cos 3ng Py (cosb). 2)

Here, P, %" (cos ) is the associated Legendre function of the first
kind of degree o and order —3n. The expression (2) satisfies the
Laplace’s equation. Furthermore, the boundary condition will be
approximately but quite closely satisfied if « is chosen appropriately
for the chosen N, as we shall see. Let us note at this point that
0 < a < 1, whatever be V. Indeed, if & < 0, V(r, 8, ) — o0
as r — 0, which contradicts our boundary condition. Also, if o > 1,
the electrical field tends to zero as » — 0; which does not account
for that field’s singularity at the apex. That (2) is only an asymptotic
expression for V(r, 8, ¢) for small r can be seen from the fact that
the right-hand side of (2) tends to infinity as » — oo.

Because of the boundary condition, we want the summation on
the right-hand side of (2) to remain as close to zero as possible.
Since »% can be divided out, this need be only along the curve I' of
Fig. 2, in fact, by symmetry only along that curve from ¢ = 0° to
¢ = 60°. Furthermore, along that arc ¢ is uniquely determined by &,
and conversely. Henceforth, we restrict I' to that arc.

To simplify our presentation let us work with just two terms in the
summation of (2), that is, let NV = 2. We obtain two simultaneous
equations for ap and a; by setting the summation equal to 0 at two
points (8g, ¢o) and (#1, ¢1) on curve I

In matrix form, we have

PY(cos 65) cos 3¢oP7%(cos 65)] [ao] _ 0 3)
Pl(cos 61) cos 3¢1 Py (cos 81) | |ar |~

Let B* denote the 2 x 2 matrix in (3). In order to fulfill (3) as well
as can be with nonzero a¢ and a1, we want det B to remain as close
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to 0 as possible for all possible choices of (8o, ¢o) and (f1, ¢1) on
curve T'. This can be accomplished by choosing « appropriately in
the interval [0, 1]. To t’his end, for each a we computed the maximum
value of det B® for all pairs of points on I'. The value of o for which
that maximum achieves its minimum value is o = 0.461.

The same computation was made for three terms of the summation
in (2), i.e., for N = 3. In this case the best value for v was 0.458.
Now however B% is 3 x 3 matrix, and we had to determine max det
B¢ for all triplets of values for (6. ¢) on I'. This of course required
much more computer time. Still larger values of N required more
computer time than was available to us. However, our final result,
namely, the numerical coefficient in (1) changed by only seven tenths
of one percent between NV = 2 and N = 3, being 1.316 for N = 2
and 1.307 for N = 3. So we do not expect that coefficient will
change significantly for higher values of V.

As the next step, consider either one of the two approximate
equalities obtained from (3). Upon factoring out ao, we get the

following expression for the resulting left-hand side

F(ﬂ, w) = P51 (cos )
agp

+ %1— cos 3P a1 (cos 8). @
0
Here, ' is the point on I' corresponding to the choice of (8, ¢); sec
(12) and (13) below. The question now is: For what value of a1 /ao
will (4) be the smallest? To evaluate “smallest,” we used the L;, Lz
and L., norm for the function ¢ + F'(a1/ao, ) and obtained the

same answer in each case, namely, ¢;/ao = —0.05.
Altogether then, we have determined that for N = 2 the best

expression for V(r, 8, ¢) is
Vir, 8, ¢) =V.+ aor ¥ [P%e1(cos 6)
— .05 cos 3¢ P 7o, (cos 8)].
&)
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TABLE 1

COMPARISON BETWEEN THE CAPACITANCES OF A RECTANGULAR CONDUCTOR (SEE FiG 4) CALCULATED BY DIFFERENT METHODS

Method Capacitance (F)
Singularity ignored; extension beyond edges 49.10
Singularity ignored; no extension beyond edges 34.82
Duncan correction only; no extension beyond edges 39.79
Singularity accounted for; no extension beyond edges when N=2 41.64
Singularity accounted for; no extension beyond edges when N=3 41.61
Ruehli and Brennan 42.5

COMPARISON BETWEEN THE RIGHT-ANGLE BEND CONDUCTE:? 1(3;5 Ig(} 5) CAPACITANCES CALCULATED BY DIFFERENT METHODS
Method Capacitance value (F)
Singularity ignored; extension beyond edges 106.06
Singularity ignored; no extension beyond edges 73.93
Duncan correction only; no extension beyond edges 79.48
Singularity accounted for; no extension beyond edges when N=2 81.22
Singularity accounted for; no extension beyond edges when N=3 81.19
Ruehli and Brennan 101.2
10 yields for N = 2:
le -
" k a0 = (V3d)7 (Y, 1)) ®)
and for N = 3:
10 a0 = (V3d)™ *H(V, — Vo). ©)

Fig. 5. A right-angle 3-D bend.

For the case of N = 3, we have

F("—]. 2 w) = P%q(cos #)

aop daop

+ 2 cos 3P 3% (cos 8)
g
a

+ =2 cos 6P Je5(cos 7). (6)
0

a

Now we have to find the best pair of values a3 /ag and az/ag to
make ¢ — F{ai/ao, az/ag, ¥) the smallest. Again all three norms
yielded the same result, namely, a; /ag = —.06 and az/aq = —.02.
So, for ¥ = 3 the best expression for V(r, 8, ¢) is

Vir. 0, &) = V.4 aor 458[P358(Cos 7)
— .06 cos 3¢ P 55 (cos )
— .02 cos 66 P45y (cos 8)]. )

In both (5) and (7) the coefficient ag may be obtained by sampling
V(r, 8. ¢) at the point (d, d. d) of Fig. 1. In spherical coordinates
that sampling point is at + = v/3d and ¢ = 0, with ¢ being
indeterminate. With 1 being V'(r. 8. ¢) at the sampling point, this

We may now take the negative of the normal component of the
gradient of V'(r, §, ¢) and multiply it by the dielectric permittivity
£ to get the charge density o(r, 8, ¢) over the squares, i.e., over the
shaded regions of Fig. 1. For N = 2, the result is

=539
o= {1.461[cos 6§ P, ; (cos §)
sin §

- P10461(COS 9)]

~ .05 cos 3¢[1.461 cos § P13, (cos 8)

— 4.461 P, 2, (cos 8)]} (10)
and for N = 3 it is

o= — a_ofi-n;;? {1.458[cos 8 PYss(cos 8)
—~ P s(cos 6]
— .06 cos 3¢4[1.458 cos §P 2 (cos 6)
— 4,458 P 2 (cos 6)]
— .02 cos 64[1.458 cos . P7es(cos #)

— 7458 P (cos 6)). (11)
An easy way to view these values is to plot them along the arc T
from ¢ = 0° to ¢ = 60° for ap = ¢ = r = 1. Moreover, points

on that arc can be given in terms of a single parameter ¢ relate to
¢ and 6 according to

cos B = — \/g sin (w + g) (12)
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+/3 cos ¥ + cos 8
\/§sin0

where, as ¢ varies from 0-60°, 9 varies from 0—45°. The plots of &
on T versus 1 are given in Fig. 3. To obtain o (r, 8, ¢) at arbitrary
points of the squares, choose any 1), compute § and ¢ from (12) and
(13), substitute into (11), and multiply by ao er*~*. The concentration
of charge at the apex of the corner is exhibited by the factor ro L

Observe in that Fig. 3, ¢ varies from a low value at v = 45°, which
represents a point along the diagonal of the square, to higher values as
1) decreases, i.e., as the point approaches an edge of the square, and
then tapers off as ¢ reaches 0, i.e., as the point reaches that edge. The
initial increase is expected, but the tapering off is not because charge
should concentrate more strongly near the edges of the conductor as
well as at its apex. We feel that this tapering off is consequence of our
truncation of (2) at low value of N. Indeed, note that, as compared
to the case when NV = 2, for N = 3 ¢ is smaller toward the center
of the square, rises more sharply as the edge is approached, and then
tapers off less. We expect that this improvement will continue as IV
is increased beyond N = 3. Moreover, we also feel that this tapering
off does not much matter because the areas under both curves of Fig.
3 are not much different. It is the increase in this area multiplied by
717 which primarily determines the field singularity at the apex.
Our expectation that our formula (1), which is obtained for N = 3,
will not change by much had we chosen N = 4 is reinforced by the
fact that the numerical coefficient in (1) changes by only seven tenths
of one percent when going from N = 2to N = 3.

The final step of our derivation is the integration of (11) over all
three squares to obtain the total charge ) on all three shaded areas
of Fig. 1. The result is our formula (1).

cos ¢ = (13)

IV. Two EXAMPLES

In order to ascertain how much corner and edge field singularitics
affect a typical capacitance computation and also to compare our
numerical results with other results in the literature, we computed
capacitances for two conductor configurations over a ground plane.

Example A: Consider the single conductor, shown in Fig. 4, of 5
m length, 5 m width, 1 m thickness, 2 m above a perfectly conducting
plane, and imbedded in a medium of unit dielectric permittivity
(e = 1). If we ignore the singularities of the electrical field at corners
and edges, but allow incremental areas of the finite-difference method
to extend beyond edges, the value of capacitance C' is 49.10 F. If
incremental areas extending beyond edges are deleted, the result is
34.82 F. If we consider edge singularities only and extended areas
are deleted, the result is 39.79. On the other hand, if we consider
both factors, i.e., in the most accurate case where all singularities are
considered but extended areas are deleted, we get C equal to 41.64
F when N = 2 and 41.61 F when N = 3. These results can be
compared to the capacitance value given by Ruehli and Brennan in
[3] by interpolating in their Fig. 2 where they use the sharp edge and
corner model. Their result is 42.5 F. These capacitances are listed
in Table I

Example B: Consider now a right-angle bend 2 m above a per-
fectly conducting plane with ¢ = 1 for the medium. Its dimensions are
shown in Fig. 5. If we do not consider the singularities of the electrical
field at corners and edges but allow overextending incremental areas,
the value of capacitance C is 106.06 F. If overextending areas are
deleted, the result is 73.93 T. If we consider edge singularities only
and extended areas are deleted, the result is 79.48. On the other hand,
if we correct both factors, we get C' is 81.22 F for N = 2 and 81.19

F for N = 3. These results can be compared to the capacitance value
given by Ruehli and Brennan in [4] by interpolating in their Fig. 9;
their value is 101.2 F. These capacitances are listed in Table IL
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Computation of Equivalent Circuits
of CPW Discontinuities Using
Quasi-Static Spectral Domain Method

D. Mirshekar-Syahkal

Abstract— An efficient and simple computer technique based on the
quasistatic approximation for the determination of the component values
of the equivalent circuits of a broad-class of coplanar waveguide (CPW)
discontinuities is introduced. The technique does not depend on the
extraction of the component values from the scattering parameters. It
uses the spectral domain formulation in conjunction with the method of
moments. The concepts behind the method are illustrated using a complex
example, the CPW T-junction. A few T-junctions are treated with the
technique. Both the measurements and the full-wave electromagnetic
simulation support the accuracy of the results.

1. INTRODUCTION

For some of its advantages, the coplanar waveguide (CPW) is
preferred to the microstrip line in developing monolithic microwave
integrated circuits (MMIC’s) on GaAs and InP. This transmission
line has also found extensive applications at mm-wave and terahertz
frequencies [1]. However, due to lack of powerful software, design
of CPW circuits is difficult and time consuming. A comprehensive
software should contain the equivalent circuits of various CPW
discontinuities including bends, open and short terminations, steps,
etc.

Recently, Naghed and Wolf [2], Naghed et al. [3], and Abdo-Tuko
et al. [4] used the three-dimensional finite difference method to char-
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