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lyzed. The electromagnetic fields in conductors are directly analyzed

by forming sufficiently small grids compared to the skin depth, and

accurate attenuation constants are obtained for the 10SSYstructures.
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A Simple Formula for the Concentration of Charge

on a Three-Dimensional Corner of a Conductor

Yimin Zhang and A. H. Zemanian

Abstract-A major problem in the computation of capacitance coeffi-

cients for microwave transmission and VLSI interconnection systems is

caused by the singularities in the electric field at the corners and edges
of conductors. For edges, a solution is given by the Duncan correction,
wh]ch is based on a two-dimensional (2-D) polar expansion of the field.
No such exact expansion exists for corners. Recent research by Beagles
and Wldteman has yielded an asymptotic expansion for the electric field
in the vicinity of a rectangular three-dimensional conductive corner, and

this is used to derive a simple formula for the charge Q (in coulombs)
concentrated at any such corner. The formula is Q = 1.307 sd(V~ – V, ),
where & is the dielectric permittivity (in farads per meter) of the medhsm
surrounding the conductive corner, d is the length (in meters) of one

side of a cubic region situated on the conductor adjacent to the corner,
V, is the electric potential (in volts) of the conductor, and V, is the

electric potential at a point in the medium displaced from the corner’s

apex along a tine through the cube’s diagonal and at a distance eqmd
to that diagonal. Q is the charge on the cube’s three surfaces lying

along the conductor’s surfaces. Such a configuration is convenient for
a finite-dMference computation of capacitance.

I. INTRODUCTION

This paper concerns the capacitance coefficients of three-

dimensional (3-D) conductors, a matter of importance to microwave

transmission netwmks, VLSI interconnects, power transmission

systems, electric equipment, and electrical insulation technology.

Much work has been done on the computation of capacitances for

two-dimensional (2-D) models of interconnection lines and other

conducting bodies, but much less has been accomplished for 3-D

models. Extended bibliographies are given in [6], [7]. A major

difficulty arises from the singularities in the electrical field at 3-D

corners of a conductor. There are also field singularities along the

edges of conductors, but their contributions to capacitances are

readily determined by Duncan’s correction [2], [5], which is based

upon an exact 2-D polar expansion of the field. Since no such

exact expansion exists in spherical coordinates, there is no exact

3-D analog of the Duncan correction. Instead, we have sought an

approximating asymptotic expansion for the electrical field near a

3-D reentrant comer. There is a literature on this subjecc see for

an extended bibliography in [7]. Much of thk work is of a very

general nature dealing with a variety of differential equations and

a variety of geometries. The paper of Beagles and Whiteman [1]

is the most pertinent one for our purposes. By using the results

of that work, we have derived a simple formula that takes into

account the concentration of charge at any 3-D rectangular comer.

This is most easily used in correcting the capacitances obtained from

finite-difference computations.
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/’-
sampling point (d, d, d)

Fig. 1. A 3-D rectangular comer on a conductor. The edges of the comer lie
along the negative z, y, z coordinates. The total charge given by (1) lies on

the surface consisting of the three squares of length d per side shown shaded.

The point in the medium at which electric potentiat is sampled is (d, d, d);
thus, it lies on a line passing through the diagonal of the cube formed by

the three squares and displaced from the apex O of the comer by the length
of the diagonal.

II. THE FORMULA

Our objective is to determine the total charge on an incremental

area adjacent to a 3-D rectangular corner of a perfect conductor. That

area consists of three squares of equal size abutting the apex of the

comer, as shown by the shaded areas in Fig. 1. Thus, those squares

form three sides of a cube with side length of d meters. We choose

rectangular coordinates (x, y, z) such that the edges of the corner lie

along the negative axes. Another cube of equal size abut the apex,

with the diagonals of both cubes forming a straight line. Thus, the

point (d, d, d) lies in the medium surrounding the conductor and at

the second cube’s comer furthest away from the apex 0. Let V. be

the electric potential at the point (d, d, d) and let Vc be the electric

potential of the conductor, both measured in volts of course. Thus, V,

samples the electric potential in the vicinity of the comer when the

conductor is held at the voltage Vc. The total charge Q in coulombs

on the three squares (shown shaded in Fig. 1) is given by

Q = 1.307cd(Vc - V,) (1)

where c is the dielectric permittivity of the medium in farad per meter.

This is a very simple formula to use in order to take into account the

electric field singularity when the capacitance of a conductor is being

determined through a finite-difference computation of the electric

potential. This is especially so when the increments in the z, y, and

z coordinates are all equal. Simply set d equal to that increment. If

those increments are not the same, then d might be set equal to the

smallest of them, and additional rectangular incremental areas may be

at-wended to the squares to conform with the rectangular incremental

areas of the finite-difference computation. Those additional areas abut

edges of the conductor, and the charges on them can be obtained from

Duncan’s correction. In short, the procedure to use when making a

finite-difference computation of capacitance is to discard the charge

on the three squares as determined by that computation and to

substitute in its place the charge as given by (1). (This is what one

does when using the Duncan correction.)

III. DERIVATION OF THE FORMULA

The derivation is rather complicated. Space limitations prevent us

from explicating all its details. Those can be found in the thesis [7].

However we can explain how (1) is derived.

Fig, 2,

1

I

f#r=o
~=125.26°

8=144.74”

A 3-D rectarwular comer whose auex is at the center of a strhere. r
is the curve of intersection between the corner and the sphere,

We work in spherical coordinates (r, 8, ~) with axis along the

diagonal line through (d, d, d) and 0 in Fig. 1. This is shown in

Fig. 2 with the comer rotated to make that axis vertical. Also shown

is a sphere centered at the comer’s apex. The sphere will intersect the

comer’s plane surfaces along a curve r. We choose 4 to equal 0°,

120°, and 240° at the three points where the edges meet the sphere.

On r, the minimum value of @is 125.26° and occurs at those three

edge points. Also, on r. the maximum value of 6’ is 144.74° and

occurs where d equals 60°, 180°, and 300°.

We wish to compute the surface charge density when the conductor

is held at Vc while all other conductors—and infinity as well—are

held at the voltage O volt.

We start with an asymptotic expansion of the electrical potential

V(r, 0, #) in the vicinity of the comer as given in [2] and [3]

N–1

V(7-> 8, $$) xv=+,” ~

.=0

a,, Cos 3n@P;3n (Cos 0). (2)

Here, P;3n (COS 0) is the associated Legendre function of the first

kind of degree Q and order – 3n. The expression (2) satisfies the

Laplace’s equation. Furthermore, the boundary condition will be

approximately but quite closely satisfied if a is chosen appropriately

for the chosen N, as we shall see. Let us note at this point that

0 ~ a ~ 1, whatever be N. Indeed, if a <0, V(r-, d, q$) + m

as r ~ O, which contradicts our boundary condition. Also, if Q > 1,

the electrical field tends to zero as r + O; which does not account

for that field’s singularity at the apex. That (2) is only an asymptotic

expression for V (~, 9, ~) for small r can be seen from the fact that

the right-hand side of (2) tends to infinity as ~ ~ cm.

Because of the boundary condition, we want the summation on

the right-hand side of (2) to remain as close to zero as possible,

Since r“ can be divided out, this need be only along the curve r of

Fig. 2, in fact, by symmetry only along that curve from q!I = 0° to

d = 60°. Furthermore, along that arc O is uniquely determined by d,

and conversely. Henceforth, we restrict r to that arc.

To simplify our presentation let us work with just two terms in the

summation of (2), that is, let N = 2. We obtain two simultaneous

equations for ao and a 1 by setting the summation equal to O at two

points (00, &I) and (01. ~1 ) on curve r.

In matrix form, we have

[

F:(cos 60) Cos 340 P;3(COS 6“) ao ~ o

I’:(COS 8,) 1[1 (3)
Cos 3$+IP;3(COS 61) al “

Let Be denote the 2 x 2 matrix in (3). In order to fulfill (3) as well

as can be with nonzero aO and a 1, we want det B” to remain as close
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Fig. 3. Normalized charge density along the curve r.
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Fig. 4. A rectangular conductor.

to O as possible for all possible choices of (6o, Q50 ) and (01, #l) on

curve 17. This can be accomplished by choosing a appropriately in

the interval [0, 1]. To this end, for each a we computed the maximum

value of det B Wfor all pairs of points on 17.The value of a for which

that maximum achieves its minimum value is a = 0.461.

The same computation was made for three terms of the summation

in (2), i.e., for N = 3. In this case the best value for ~ was 0.458.

Now however B“ is 3 x 3 matrix, and we had to determine max det

Bm for all triplets of values for (6, ~) on 17. This of course required

much more computer time. Still larger values of .47 required more

computer time than was available to us. However, our final result,

namely, the numerical coefficient in (1) changed by only seven tenths

of one percent between N = 2 and N = 3, being 1.316 for N = 2

and 1.307 for N = 3. So we do not expect that coefficient will

change significantly for higher values of N.

As the next step, consider either one of the two approximate

equalities obtained from (3). Upon factoring out aO, we get the

following expression for the resulting left-hand side

+ ~ Cos 3&;:1 (Cos 6’). (4)

Here, ~ is the point on 17corresponding to the choice of (0, ~); see

(12) and (13) below. The question now is: For what value of al /aO

will (4) be the smallest? To evaluate “smallest,” we used the L1, Lz

and L~ norm for the function @ i-+ F (a 1/aO, @) and obtained the

same answer in each case, namely, al /aO = –0.05.
Altogether then, we have determined that for N = 2 the best

expression for I’(r, 6’, @) is

~’(~> g> @)xl; + aor”” [P,~,l(cos 0)

— .05 Cos 34PZ:1(COS ‘9)].

(5)
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TABLE I

COMPARISONBETWEEN THE CAPACITANCESOF A RECTANGULAR CONDUCTOR (SEE FIG 4) CALCULATED BY DIFFERENT METHODS

Method Capacitance (F)

Singularity ignored; extension beyond edges 49.10

Singularity ignored; no extension beyond edges 34.82

Duncan correction only; no extension beyond edges 39.79
I

Singularity accounted for; no extension beyond edges when N=2 41.64

Singularity accounted for; no extension beyond edges when N=3 41.61

I Ruehli and Brennan I 42.5 I

TABLE II

COMPARISONBETWEEN THE RIGHT-ANGLE BEND CONDUCTOR(SEE FIG 5) CAPACITANCES CALCULATED BY DIF’FERENT METHODS

Method Capacitance value (F)

Singularity ignorcxi; extension beyond edges 106.06

Singnlarit y ignored; no extension beyond edges 73.93

Duncan correction only; no extension beyond edges 79.48

Singularity accounted for; no extension beyond edges when N=2 81.22

Singularity accounted for; no extension beyond edges when N=3 81.19

Ruehli and Brennan 101.2

Fig. 5. A right-angle 3-D bend,

For the case of N = 3, we have

‘(: z “) ‘p’’’(coSo)

+% COs3&’&(cos8)

+% COS60P~fB(COS O). (6)

Now we haveto find the best pair of values al/aO anda2/aO to

make t! ~ F’(al/ao, az/aO, V) the smallest. Again all three norms

yielded the same result, namely, al /uo = – .06 and a2/ao = – .02.

So, for .V = 3 the best expression for V(T, 0, @) is

k-(r. 0, d) xt~+aoT “’[P,:5S(COS 0)

– .06 COS 3$@~& (COS d)

– .02 COS 6@P,;&(cos 0)]. (7)

In both (5) and (7) the coefficient aO maybe obtained by sampling

1’ ( r, H, g!J) at the point (d, d, d) of Fig. 1. In spherical coordinates

that sampling point is at r = & d and O = O, with ~ being

indeterminate. With t ~ being V ( r. $. ~) at the sampling point, this

yields for N = 2:

a. =(~d)– 461(\\ – ~~)

and for N = 3:

(8)

We may now take the negative of the normal component of the

gradient of V ( r, 0, ~) and multiply it by the dielectric permittivity

~ to get the charge density a (r, O, @) over the squares, i.e., over the

shaded regions of Fig. 1. For N = 2, the result is

aoc
–,539

~=— ~ {1.461[cos #P~,l (CO, 0)

– P:46, (COS 19)]

– .05 COS 3@[l.461 COS6P;:1(COS 8)

– 4.461 P1-:,l(c0, d)]}

and for N = 3 it is

(lo)

ao:
— 542

~=— ~ {1.458[cos 6’ &(COS @)

— ~:,,5, (co= ~)]

– .06 CO’ 3@[l.458 CO’ @p&(cos 6)

– 4.458 Pl;&(cos 6)]

– .02 COS 6@[l.458 COS 6P;&(cos 0)

– 7.458 Pl–&(cos 8)}. (11)

An easy way to view these values is to plot them along the arc r

from ~ = 0° to @ = 60° for a. = ~ = T = 1. Moreover, points

on that arc can be given in terms of a single parameter + relate to

@ and % according to

cosd=-{sin(++~) (12)
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cosd=~costi+cose (13)
42 sin 9

where, as ~ varies from 0–60°, @ varies from 045°. The plots of u

on r versus @ are given in Fig. 3. To obtain u (r, 0, +) at arbitrary

points of the squares, choose any ~, compute O and@ from (12) and

(13), substitute into (11), and multiply by ao era-’. The concentration

of charge at the apex of the comer is exhibited by the factor r” – 1.

Observe in that Fig. 3, u varies from a low value at @ = 45°, which

represents a point along the diagonal of the square, to higher values as

~ decreases, i.e., as the point approaches au edge of the square, and

then tapers off as t) reaches O, i.e., as the point reaches that edge. The

initial increase is expected, but the tapering off is not because charge

should concentrate more strongly near the edges of the conductor as

well as at its apex. We feel that this tapering off is consequence of our

truncation of (2) at low value of N. Indeed, note that, as compared

to the case when N = 2, for N = 3 a is smaller toward the center

of the square, rises more sharply as the edge is approached, and then

tapers off less. We expect that this improvement will continue as N

is increased beyond N = 3. Moreover, we also feel that this tapering

off does not much matter because the areas under both curves of Fig.

3 are not much different. It is the increase in this area multiplied by

r 1–” which primarily determines the field singularity at the apex.

Our expectation that our formula (l), which is obtained for N = 3,

will not change by much had we chosen N = 4 is reinforced by the

fact that the numerical coefficient in (1) changes by only seven tenths

of one percent when going from N = 2 to N = 3.

The final step of our derivation is the integration of (11) over all

three squares to obtain the total charge Q on all three shaded areas

of Fig. 1. The result is our formula (l).

IV. Two EXAk4PLES

In order to ascertain how much comer and edge field singularities

affect a typical capacitance computation and also to compare our

numerical results with other results in the literature, we computed

capacitances for two conductor configurations over a ground plane.

Example A: Consider the single conductor, shown in Fig. 4, of 5

m length, 5 m width, 1 m thickness, 2 m above a perfectly conducting

plane, and imbedded in a medium of unit dielectric permittivity

(e = 1). If we ignore the singularities of the electrical field at comers

and edges, but allow incremental areas of the finite-difference method

to extend beyond edges, the value of capacitance C is 49.10 F. If

incremental areas extending beyond edges are deleted, the result is

34.82 F. If we consider edge singularities only and extended areas

are deleted, the result is 39.79. On the other hand, if we consider

both factors, i.e., in the most accurate case where all singularities are

considered but extended areas are deleted, we get C equal to 41.64

F when N = 2 and 41.61 F when N = 3. These results can be

compared to the capacitance value given by Ruehli and Brennan in

[3] by interpolating in their Fig. 2 where they use the sharp edge and

comer model. Tlneir result is 42.5 F. These capacitances are listed

in Table I.

Example B: Consider now a right-angle bend 2 m above a per-

fectly conducting plane with e = 1 for the medium. Its dimensions are

shown in Fig. 5. If we do not consider the singularities of the electrical

field at comers and edges but allow overextending incremental areas,

the value of capacitance C is 106.06 F. If overextending areas are

deleted, the result is 73.93 F. If we consider edge singularities only

and extended areas are deleted, the result is 79.48. On the other hand,

if we correct both factors, we get C is 81.22 F for N = 2 and 81.19

F for N = 3. These results can be compared to the capacitance value

given by Ruehli and Brennan in [4] by interpolating in their Fig. 9;

~eir v&e is 101.2 F. These capacitances ar~ liste~in Table II:
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Computation of Equivalent Circuits

of CPW Discontinuities Using

Quasi-Static Spectral Domain Method

D. Mirshekar-Syahkal

Abstract— An efficient and simple computer technique based on the

quasistatic approximation for the determination of the component values
of the equivalent circuits of a broad-class of coplanar waveguide (CPW)

discontinuities is introduced. The technique does not depend on the
extraction of the component values from the scattering parameters. It
uses the spectral domain formulation in conjunction with the method of
moments. The concepts behhd the method are illustrated using a complex
example, the CPW T-junction. A few T-junctions are treated with the

technique. Both the measurements and the futl-wave electromagnetic
simulation support the accuracy of the results.

I. INTRODUCTION

For some of its advantages, the coplanar waveguide (CPW) is

preferred to the microstrip line in developing monolithic microwave

integrated circuits (MMIC’s) on GaAs and InP. This transmission

line has also found extensive applications at mm-wave and terahertz

frequencies [1]. However, due to lack of powerful software, design

of CPW circuits is difficult and time consuming. A comprehensive

software should contain the equivalent circuits of various CPW

discontinuities including bends, open and short terminations, steps,

etc.

Recently, Naghed and Wolf [2], Naghed et al. [3], and Abdo-Tuko

et al. [4] used the three-dimensional finite difference method to chtu-
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